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Abstract

A new nonlinear solution method is developed and applied to a non-equilibrium radiation di!usion
problem. With this new method, Newton-like super-linear convergence is achieved in the nonlinear iteration,
without the complexity of forming or inverting the Jacobian from a standard Newton method. The method is
a unique combination of an outer Newton-based iteration and and inner conjugate gradient-like (Krylov)
iteration. The e!ects of the Jacobian are probed only through approximate matrix}vector products required
in the conjugate gradient-like iteration. The methodology behind the Jacobian-free Newton}Krylov method
is given in detail. It is demonstrated that a simple, successive substitution, linearization produces an e!ective
preconditioning matrix for the Krylov method. The e$ciencies of di!erent methods are compared and the
bene"ts of converging the nonlinearities within a time step are demonstrated. ( 1999 Elsevier Science Ltd.
All rights reserved.
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1. Introduction

Radiation transport in astrophysical phenomena and inertial con"nement fusion is often
modeled using a di!usion approximation. When the radiation "eld is not in thermodynamic
equilibrium with the material then a coupled set of time dependent di!usion equations is used to
simulate energy transport [1]. These equations are highly nonlinear and exhibit multiple time
and space scales. Implicit integration methods are desired to overcome undesirable time step
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restrictions. Traditionally, the coupling of these systems has been handled via operator splitting,
and the nonlinearities are seldom converged within a time step [1]. Both of these choices impose
&&e!ective'' time step size restrictions for accuracy and nonlinear stability. Additionally, the
nonlinear residual of the system is not formed, and thus it cannot be used to monitor convergence
within a time step. We are motivated to begin to quantify the e!ects of converging, or not
converging, the nonlinearities within a time step. Furthermore, we are motivated to develop an
e$cient iterative method for converging the nonlinearities within a time step.

We present the results of applying a Jacobian-free Newton-GMRES method [2] to a non-
equilibrium radiation di!usion problem. The Generalized Minimal RESidual (GMRES) [3]
algorithm is a conjugate gradient-like (Krylov) linear iterative method. In the Newton}GMRES
(Newton}Krylov) method the e!ects of the Jacobian can be approximated through matrix}vector
products, which are required in the Krylov method. This Newton}Kryolv method can thus provide
Newton-like nonlinear convergence without requiring the actual formation or inversion of the
Jacobian matrix. This methodology has been applied to a variety of boundary value problems with
complex, multiple time-scale, physics [4}7]. Here we apply the methodology to a time-dependent
problem in non-equilibrium, #ux-limited, radiation di!usion. It is demonstrated that, on this
problem, a simple linearization, successive substitution [8], produces a e!ective preconditioning
matrix for the Krylov method [9]. The methodology behind the Jacobian-free Newton}Krylov
method is given in detail. The e$ciency of the proposed Newton}Krylov nonlinear iterative
method is compared to a more standard nonlinear iterative method, successive substitution. The
bene"ts of converging the nonlinearities within a time step are examined.

We wish to emphasize that the proposed approach is di!erent from other, more standard,
Newton-based methods applied to this type of problem [10, 11]. Our proposed method does not
require the formation of the Jacobian, yet obtains Newton-like nonlinear convergence rates. The
details of evaluating the Jacobian are not given in Ref. [11]. In Ref. [11] an outer Newton-based
iteration is used with an inner GMRES iteration, but apparently not in a matrix-free fashion. In
Ref. [10] the details of evaluating the Jacobian are given.

2. Physics model and spatial discretization

Ignoring hydrodynamics and thermal conduction and working in one dimension results in the
following coupled system for radiation energy, E, and material temperature, ¹.

Radiation di!usion (grey approximation):

LE
Lt

!
L
Lx AcDr

LE
LxB"cp

!
(a¹4!E) . (1)

Material energy balance:

C
v
L¹
Lt

"!cp
!
(a¹4!E) . (2)

Here C
v
is the material speci"c heat, c is the speed of light, a is the Stefan}Boltzmann constant, and

p
!

is the photon absorption cross-section. In thermal equilibrium we have E"a¹4, and for the
non-equilibrium case one can de"ne a radiation temperature as, ¹

3
"(E/a)0.25. For simplicity, and
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to be consistent with the previous model problems of [12, 13] we will work in an arbitrary system
of units where C

v
"c"a"1.0. Additionally the form p

!
"¹~3 will be used for the absorption

cross-section. It has been assumed here that the scattering cross-section, p
4
is zero. From simple

isotropic di!usion theory [1] the following form for the radiation di!usion coe$cient results:

D
3
(¹)"

1
3p

!
. (3)

However, in regions of strong gradients simple di!usion theory can fail, resulting in a #ux of energy
moving faster than the speed of light. To prevent this arti"cial behavior the di!usion coe$cient can
be augmented in a fashion referred to as #ux limiting [1]. The performance of the proposed
algorithm will be investigated with two di!erent functional forms for the #ux limiting. The "rst
method has the functional form,

D
3
(¹, E)"

1
(3p

!
#1/E DLE/LxD) . (4)

This #ux-limiting method will be referred to as method one. Discussion and use of this type of #ux
limiter can be found in Refs. [14, 15]. There are several ways to implement this #ux-limiter, and the
speci"c implementation used in this paper will be given shortly. The second method originates from
Ref. [16] and has the functional form

D
3
(¹, E)"

j(¹, E)
p
!
u (¹, E)

. (5)

This #ux-limiting method will be referred to as the Levermore method. For details on this method,
speci"cally de"nitions of j and u, see Ref. [16]. We will provide our discrete implementation form
for both methods.

The model problem considered in this study is taken from [12, 13] and consists of a unit
radiation #ux impinging on an initially cold slab of unit depth. This results in mixed, or Robin,
boundary conditions at ¸"0 and ¸"1. Following [12], at ¸"0 we use

1
4

E!

1
6p

!

LE
Lx

"1, (6)

and at ¸"1 we use,

1
4

E#

1
6p

!

LE
Lx

"0. (7)

Second order in space "nite volumes is used to discretize the di!usion operator in the radiation
di!usion equation on a uniform grid. The di!usion coe$cient, D

3
, is evaluated at cell faces by

linearly interpolating ¹ and E to cell faces and then evaluating D
3
. This is, of course, inadequate for

multi-material problems. Considering a uniform grid, the spatial discretization of the di!usion
term in "nite volume i is then,

P
vol, i

L
Lx AD3

LE
LxB dvol

i
"

D
3, i`1@2

(E
i`1

!E
i
)!D

3, i~1@2
(E

i
!E

i~1
)

*x
. (8)

This results from the cell volume, vol, being equal to *x in one dimension.
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Two forms for the #ux limited di!usion coe$cient are considered. The "rst one, method one, is
implemented as

D
3, i`1@2

"C3((¹
i
#¹

i`1
)0.5) ~3#

2DE
i`1

!E
i
D

*x (E
i`1

#E
i
) D

~1
. (9)

Recall that p
!
"¹~3. The second form, the Levermore method, is implemented as

u
i`1@2

"#

(0.5(¹
i`1
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i
))4

0.5(E
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)

, (10)
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2DE
i`1
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D
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i`1
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i`1@2

"

2#R
i`1@2

6#3R
i`1@2

#R2
i`1@2

, (12)

D
3, i`1@2

"j
i`1@2

[u
i`1@2

((¹
i
#¹

i`1
)0.5)~3]~1. (13)

It is not our motivation here to compare solution results from these two #ux-limiting strategies. We
will concentrate on comparing solution algorithm performance only.

3. Time integration and nonlinear iteration

Three implicit time integration methods are compared, with all three being based on a "rst-order
backward Euler time integration. The di!erences between the methods are a result of converging or
not converging the nonlinearities, and the method used to converge the nonlinearities. The "rst
method is a fully coupled, linearized, semi-implicit technique which does not converge nonlineari-
ties. By this we mean that D

3
and p

!
are evaluated at previous time step solutions, and ¹4 is

linearized, such that we have a linear problem at each time step. This method may also be referred
to as linearly implicit. The second method uses a successive substitution iteration, also referred as
a Picard iteration [8], to converge the nonlinearities at each time step. The third method uses
a matrix-free Newton}Krylov method to converge the nonlinearities at each time step.

In the semi-implicit (SI) method all nonlinearities are evaluated at old time step level. Since there
is no nonlinear iteration in this method, we only require a time step index, n. Our system of
equations becomes

En`1!En

*t
!

L
Lx ADn

3

LEn`1

Lx B"pn
!
(¹n`1(¹n)3!En`1), (14)

¹n`1!¹n

*t
"!pn

!
(¹n`1(¹n)3!En`1). (15)

Here we have linearized (¹n`1)4+¹n`1(¹n)3. We have also used the linearization (¹n`1)4+
(¹n)3(4¹n`1!3¹n) and found that it made no di!erence on the results presented here.
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In the fully implicit Picard (FIP) method nonlinearities are converged within a time step, and all
nonlinearities are evaluated at the previous nonlinear iteration level k!1. This results in the
following system of equations:

En`1,k!En

*t
!

L
Lx ADn`1,k~1

3

LEn`1,k

Lx B"pn`1,k~1
!

(¹n`1,k (¹n`1,k~1)3!En`1,k), (16)

¹n`1,k!¹n

*t
"!pn`1,k~1

!
(¹n`1,k(¹n`1,k~1)3!En`1,k). (17)

Since the initial guess for En`1 and ¹n`1 is En and ¹n, one iteration of FIP is equivalent to the SI
method if the linear solve is converged to a signi"cant tolerance.

In the fully implicit Newton}Krylov (NK) method we again converge the nonlinearities within
a time step thus we need both a time step index, n, and a nonlinear iteration index, k. The "rst-order
accurate time integration method is;

En`1,k!En

*t
!

L
Lx ADn`1,k

3

LEn`1,k

Lx B"pn`1,k
!

((¹n`1,k)4!En`1,k) , (18)

¹n`1,k!¹n

*t
"!pn`1,k

!
((¹n`1,k)4!En`1,k). (19)

The nonlinear iteration is implemented with an inexact, matrix-free Newton}Krylov method. By
inexact Newton we mean that the convergence tolerance of the linear solver (GMRES) is
proportional to the current nonlinear residual. This same linear convergence tolerance algorithm is
used in the FIP method and will be discussed in more detail in the next section. By matrix-free
Newton}Krylov we mean that the required Jacobian-vector product in each GMRES iteration is
replaced by a "nite di!erence approximation to the true Jacobian-vector product [2]. This concept
will also be presented in detail in the next section.

Since the nonlinear functions play such an important role in describing the algorithm, and
monitoring convergence, we de"ne them so as to avoid any confusion. The nonlinear functions are
the discretized equations at each grid cell. The functions for energy at cell i, FE

i
, and for material

temperature at cell i, FT
i
, are,

FE
i
"P

vol, i
C
En`1
i

!En
i

*t
!

L
Lx ADn`1

3

LEn`1

Lx B
i

!pn`1
!

((¹n`1
i

)4!En`1
i

)D dvol
i
, (20)

FT
i
"P

vol, i
C
¹n`1

i
!¹n

i
*t

#pn`1
!

((¹n`1
i

)4!En`1
i

)D dvol
i
. (21)

The goal of a nonlinear iterative method is to drive FE
i
and FT

i
towards zero at each "nite volume. It

should be noted that in the limit of nonlinear convergence, both fully implicit methods, FIP and
NK, must give the same answer since they are solving the same nonlinear problem.
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4. Jacobian-free Newton+Krylov method

In this section we provide a detailed description of the proposed nonlinear iterative method. The
discussion of Newton's method is standard. We will give some description of a Krylov-based linear
iterative method in order to elucidate the Jacobian-free aspect of the proposed method. It is not our
intention to give a detailed description of Krylov methods, for which we would recommend the
following texts [17, 18].

Newton's method requires the solution of the linear system

Jkduk"!F (uk), uk`1"uk#duk, (22)

where J is the Jacobian matrix, F(u) is the nonlinear system of equations, u is the state vector, and
k is the nonlinear iteration index. For our problem speci"cally we have,

F(u)"MFE
1
, FT

1
, FE

2
, FT

2
, 2 , FE

i
, FT

i
, 2 , FE

N
, FT

N
N, (23)

and,

u"ME
1
, ¹

1
, E

2
, ¹

2
, 2 , E

i
, ¹

i
, 2 , E

N
, ¹

N
N, (24)

where i is the "nite volume index, and N is the number of "nite volumes. In vector notation, the
(i, j)th element of the Jacobian matrix is,

J
i, j
"

LF
i
(u)

Lu
j

. (25)

Forming each element of J requires taking analytic or numerical derivatives of F
i
(u) with respect to

u at each grid point. This can be both di$cult and time consuming. Especially for problems with
#ux-limiting, and problems for which cross-sections and speci"c heats are in tabular form.

4.1. Matrix-free approximation

The Generalized Minimal RESidual (GMRES) algorithm is used to solve Eq. (22). GMRES (or
any other Krylov method such as conjugate gradients) de"nes an initial linear residual, r

0
given an

initial guess, du
0
,

r
0
"!F(u)!Jdu

0
. (26)

Note that the nonlinear iteration index, k, has been dropped. This is because the GMRES iteration
is performed at a "xed k. We typically take du

0
equal to zero. The lth GMRES iteration minimizes

EJdu
l
#F (u)E

2
with a least squares approach. du

l
is constructed from a linear combination of the

Krylov vectors (search directions) Mr
0
, Jr

0
, (J)2r

0
, 2 , (J)l~1r

0
N, which were constructed during the

previous l!1 GMRES iterations. This linear combination of Krylov vectors can be written as

du
l
"du

0
#

l~1
+
j/0

a
j
(J) jr

0
, (27)

where evaluating the scalars a
j
is part of the GMRES iteration. Upon examining Eq. (27) we see

that GMRES requires the action of the Jacobian only in the form of matrix}vector products, which
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can be approximated by [2];

Jv+[F (u#ev)!F(u)]/e, (28)

where v is a Krylov vector (i.e. one of Mr
0
, Jr

0
, (J)2r

0
, 2 , (J)l~1r

0
N), and e is a small perturbation.

Eq. (28) is a "rst-order Taylor series expansion approximation to the Jacobian, J, times a vector,
v. For illustration consider the two coupled nonlinear equations F

1
(u

1
, u

2
)"0, F

2
(u

1
, u

2
)"0. The

Jacobian for this problem is

J"

LF
1

Lu
1

LF
1

Lu
2

LF
2

Lu
1

LF
2

Lu
2

.

Working backwards from Eq. (28), we have

F(u#ev)!F(u)
e

"A
F
1
(u

1
#ev

1
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2
#ev

2
)!F

1
(u

1
, u

2
)

e

F
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(u

1
#ev

1
, u

2
#ev

2
)!F

2
(u

1
, u

2
)

e B.
Approximating F(u#ev) with a "rst-order Taylor series expansion about u, we have;

F(u#ev)!F(u)
e

+A
F
1
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1
, u

2
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1
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1

Lu
1

#ev
2
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2
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(u
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, u

2
)
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F
2
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1
, u

2
)#ev

1
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2

Lu
1

#ev
2
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2
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2

!F
2
(u

1
, u

2
)

e B .

This expression can be simpli"ed to

A
v
1

LF
1

Lu
1

#v
2

LF
1

Lu
2

v
1

LF
2

Lu
1

#v
2

LF
2

Lu
2
B"Jv.

This matrix-free approach, besides its obvious memory advantage, has many unique capabilities.
Namely, Newton-like nonlinear convergence without forming or inverting the true Jacobian.

To complete the description of this technique we provide a prescription for evaluating the scalar
perturbation. In this study e is given by

e"
1

NEvE
2

N
+

m/1

bDu
m
D, (29)
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where N is the linear system dimension and b is a constant whose magnitude is approximately the
square root of machine roundo! (b"10~5 for most of this study).

4.2. Preconditioning

Traditionally one uses a simple iterative method as a preconditioner to GMRES. The purpose of
preconditioning is to e$ciently cluster eigenvalues of the iteration matrix, which in turn will reduce
the required number of GMRES iterations. The fact that a matrix is formed for the purpose of
preconditioning is the motive for calling this method Jacobian-free, and not matrix-free. As we will
show, the preconditioning matrix which is formed is much simpler than the true Jacobian of the
system.
We employ right preconditioning and thus we are solving,

(JM~1) (Mdu)"!F(u) . (30)

M symbolically represents the preconditioning matrix and M~1 the inverse of preconditioning
matrix. In practice, this inverse is only approximately realized through some standard iterative
method, and thus we may think of it more as M3 ~1. The right preconditioned matrix-free algorithm
is

JM3 ~1v+[F (u#eM3 ~1v)!F(u)]/e. (31)

This process is actually done in two steps;

(1) Solve (iteratively, and not to convergence) My"v for y
(2) Perform Jy+[F (u#ey)!F(u)]/e,

Thus only the matrix M is formed and only the matrix M is iteratively inverted. There are two
choices to be made;

(1) What linearization should be used to form M?
(2) What linear iterative method should be used to solve My"v?

We have already de"ned J is the matrix coming from the Newton linearization of our nonlinear
system. Our stated goal is to avoid forming this matrix, but to maintain Newton-like nonlinear
convergence. We will refer to the matrix coming from the successive substitution, or Picard-type,
linearization as A, and A will be used for M. Thus, the semi-implicit method will be the
preconditioner. At this point the di!erence between performing a Picard or a Newton nonlinear
iteration resides solely in our matrix-vector multiply in GMRES. If we wish to perform Newton
nonlinear iterations Eq. (31) is used to perform the matrix}vector multiply JA3 ~1v. However, to
perform a Picard iteration we use a standard matrix}vector multiply for AA3 ~1v, and in place of
Eq. (22) we are solving,

Akduk"!F(uk), uk`1"uk#duk. (32)

Symmetric Gauss}Seidel is used for iteratively solving My"v (i.e. Ay"v) for all methods in this
study.

As stated, an inexact convergence tolerance is used on linear solve for the FIP and NK methods.
This means that the tolerance to which we solve the linear problem, on each nonlinear iteration, is
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related to the current nonlinear residual, F(uk), as

EJkduk#F(uk)E
2
(cEF(uk)E

2
. (33)

For most of this study we use a constant c"1.0]10~2. Algorithm sensitivity to the choice of both
b in Eq. (29), and c in Eq. (33) will be investigated.

To summarize, this algorithm achieves Newton-like nonlinear convergence solely through
a special matrix}vector multiply routine in GMRES. If we use instead a standard matrix}vector
multiply, then one nonlinear iteration is the semi-implicit method, and several nonlinear iterations
is referred to as successive substitution, or a Picard iteration. The true Jacobian of the system is
never formed and never inverted, and thus we refer to the algorithm as Jacobian-free. An
alternative way of viewing this algorithm is that an outer iteration of the matrix-free Newton}
Krylov method is used to accelerate the nonlinear convergence of the Picard method.

5. Algorithm performance and results

In this section we study the performance of the proposed algorithm on two model problems with
the only di!erence between the problems being the #ux-limiter. For problem 1 we have a unit #ux
of radiation energy impinging on the left side (¸"0) of a cold slab of unit width (¸"1). 200
uniform "nite volumes are use to discretize the problem in space. The initial conditions are
E0"1.0]10~5 and ¹0"(E0)0.25. We use p

a
"¹~3, and D

3
is #ux-limited using method one. The

problem is run out to time t"3.0. We ramp our time step up through the "rst 8 time steps in
a pre-de"ned fashion. The "rst time step is always equal to 0.1 times the "nal time step and the "rst
8 time steps are equal to 2 "nal time steps.

As a "rst, rough, measure of accuracy we de"ne the front position as the center of the "rst cell to
drop below ¹

3
"E0.25"0.1. Here we de"ne a second-order accurate in time NK method with

a time step of 1.0e-4 as a base and measure the deviation of the other runs from this. Details of
higher-order accurate time step methods and time step convergence studies will be the subject of an
upcoming study. For this base solution the front position was x"0.8325 at time"3. The
solutions for ¹

3
and ¹, at time"1 and 3 are plotted in Fig. 1. Here we can see the sharpness of the

front.
Table 1 compares linear solve requirements, nonlinear iterations, and accuracy for the NK, FIP,

and SI methods. the ¸
2
error of the solution is de"ned as ¸

2
(Error),E¹

3
!¹"!4%

3
E
2
. The nonlinear

convergence tolerance within a time step is de"ned as EF(uk)E
2
41.0]10~5. The results in Table 1

indicate that there is a reduction in total linear solves to be had by converging the nonlinearities
within a time step. This was accomplished by running the simulation at a larger time step, while
maintaining strong nonlinear convergence with the NK methods.

Figs. 2 and 3 demonstrate the nonlinear convergence behavior of the NK and FIP methods
respectively. The superiority of the NK method is clear. Increasing the time step by a factor of "ve
caused an increase in the average number of nonlinear iterations per time step by only a factor of
two for the NK method. However, this same factor of "ve increase in time step size in the FIP
method resulted in a increase in the average number of nonlinear iterations per time step by more
than a factor of "ve. Again, recall that the only di!erence between these two methods is in the
matrix}vector multiply in GMRES.
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Fig. 1. Base solution for problem 1 at time"1 and 3.

Table 1
Algorithm performance as a function of time step for problem 1 and time"3

Method and Number Avg. nonlinear Total linear Front position ¸
2

time step of dt1s Its. per dt solves error (Perct.) error

NK, dt"2e-3 1506 2.1 3163 0.5 0.161
NK, dt"1e-2 306 3.87 1184 1.0 0.59
FIP, dt"2e-3 1506 8.6 12,952 0.5 0.162
FIP, dt"1e-2 306 58 17,748 1.0 0.591
SI, dt"5e-4 6006 1 6006 !1.0 0.92
SI, dt"2e-3 1506 1 1506 !6.0 2.29
SI, dt"1e-2 306 1 306 !20.5 5.11

Fig. 4 compares the results around the front at time"3, the required number of linear solves are
in parentheses. Note that the converged method, NK, is ahead of the &&base'' answer while the SI
solutions are all behind the &&base'' answer. The FIP results, not plotted, are identical to the NK
solutions. The most signi"cant result from this plot is that NK, with a time step of 1.0e-2 and 1184
linear solves, is closer to the base solution (second order accurate in time NK with a time step of
1.0e-4) then the SI method with a time step of 5.0e-4 and 6006 linear solves.

It should be noted that in practice, methods which do not converge nonlinearities within a time
step monitor, and control, time step size by looking at maximum relative changes in E. In our
results to date we have used a constant time step. For three simulations in Table 1, we report this
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Fig. 2. Convergence plot for NK method on problem 1 at time"1 and 3, for time steps 1e-2, and 2e-3.

Fig. 3. Convergence plot for FIP method on problem 1 at time"1 and 3, for time steps 1e-2, and 2e-3.

diagnostic averaged over the last three time steps. Here we use,

*E
E

"max
i C

DEn`1
i

!En
i
D

En`1
i

#1.0]10~3 D . (34)

For Table 1 we have the following results for *E/E for 3 simulations; 0.807 (NK, dt"1e-2), 0.232
(SI, dt"2e-3), and 0.093 (SI, dt"5e-4). Thus it appears that if the nonlinearities are converged
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Fig. 4. Comparison of various solutions at time"3. for problem 1. Linear solve requirements are in parenthesis.

Table 2
Algorithm performance as a function of time step for problem 2 and time"1

Method and Number Avg. nonlinear Total linear Front position ¸
2

time step of dt's Its. per dt solves error (Perct.) error

NK, dt"1e-3 1006 2.0 2012 0.0 0.021
NK, dt"5e-3 206 3.3 680 1.0 0.25
FIP, dt"1e-3 1006 28.0 28,168 0.0 0.021
FIP, dt"5e-3 206 82.0 16,895 1.0 0.25
SI, dt"2.5e-4 4006 1 4006 !2.0 0.64
SI, dt"1e-3 1006 1 1006 !6.5 1.67
SI, dt"5e-3 206 1 206 !23.0 3.84

one can sustain a signi"cantly larger change in E per time step, while maintaining increased
accuracy.

Problem 2 is identical to problem 1, except that the Levermore #ux-limiter is used. This problem
is run out to time"1. Smaller time steps are used here as a result of a faster moving front. Table 2
presents results for this problem and the base solution is plotted in Fig. 5. Again we see that there is
a potential signi"cant savings in linear solves by using NK and converging the nonlinearities
within a time step. NK is superior to FIP in terms of work required to converge the nonlinearities.
NK and FIP provide the same "nal answer when they both converge the nonlinearities.

Fig. 6 plots nonlinear convergence for the "nal time step, at two di!erent time step sizes, for both
FIP and NK on the same plot. The superior nonlinear convergence of the NK method is again
evident. The NK method has produced the same rapidly converging method even with the

D.A. Knoll et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 63 (1999) 15}2926



Fig. 5. Base solution for problem 2 at time"1.

Fig. 6. Convergence plot for FIP and NK methods for problem 2 at time"1 for time steps 5e-3, and 1e-3.

increased complexity of the Levermore #ux-limiter. Recall that the Jacobian elements from the
#ux-limited di!usion coe$cient are never formed.

Finally, Tables 3 and 4 present the sensitivity of the NK method to the choice of e from Eq. (29)
and c from Eq. (33). These result are for problem 1 run out to time"1, with a time step of 1e-2. We
can see that neither the nonlinear iterations per time step or the linear iterations per time step are
sensitive to the value of b, and thus e. However, while the nonlinear iteration are not very sensitive
to the choice of c, the linear iterations are.
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Table 3
E!ect of e (i.e. b) on algorithm performance data for prob-
lem 1, dt"1e-2, up to time"1, c"1]10~2

Solution Avg. Newton its. Avg. GMRES its.
method per time step per time step

b"1]10~4 4.21 20.6
b"1]10~5 4.21 20.6
b"1]10~6 4.21 20.6

Table 4
E!ect of c on algorithm performance data for problem 1,
dt"1e-2, up to time"1, b"1]10~5

Solution Avg. Newton its. Avg. GMRES its.
method per time step per time step

c"5]10~2 4.47 15.0
c"1]10~2 4.21 20.6
c"2]10~3 4.12 26.4

6. Conclusions

We have presented a new nonlinear solution algorithm for nonequilibrium, #ux-limited, radi-
ation di!usion. The method achieves Newton-like, super-linear, convergence without forming or
inverting the Jacobian. It appears that there are very real increases in accuracy and/or reductions in
total computational e!ort as a result of converging nonlinearities within a time step using an
e$cient nonlinear iterative method. It has also been demonstrated that when the nonlinearities are
converged within a time step, a simulation can withstand larger values of *E/E while maintaining
accuracy.

The importance of the number of GMRES iterations, per Newton iteration, has not been
emphasized here because our model problems are 1-D. For this same reason we have used number
of linear solves per time step as a measure of e!ort instead of CPU time. In 2-D we are investigating
multigrid based preconditioners in order to limit the number of GMRES iterations per Newton
[9]. Here we will also consider CPU time as a more reliable measure of e!ort.

Future work will investigate the e!ects of time step control and time step accuracy, along with
more complicated model problems.
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